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In this study we qualitatively investigate the geometric properties of intersecting ferroelectric
domain walls. Such intersections, being the locus of two vanishing polarization components, repre-
sent topological defects of reduced dimensionality [1] as compared to the domain walls themselves,
and therefore can posses advanced functionalities for the design and implementation of novel elec-
tronic devices [2, 3]. However, despite the considerable interest in nontrivial ferroelectric domain
patterns [2–5], the full topological classification of inhomogeneous polarization structures in the
vicinity of the domain walls intersection lines has not been fully developed. For instance, the de-
scription of the intersection of two domain walls has been thoroughly investigated in the sole case
of ferroelectric systems described by two-component order parameter [7]. Herein, we attempt to
advance the methodology described in Ref. [7] to the three dimensional case.

Our discussion is limited to intersecting domain walls that do not carry any bound electric
charge density [9]. Without any loss of generality, we choose the line at the intersection of the
domain walls as being along the z-axis, and the domain walls coinciding with the xz and yz
coordinate planes. Since ∇ · P = 0, only Px (Py) and Pz components of polarization can change
upon crossing the xz (yz) plane. Two simple illustrative cases under study are presented in Fig.1.
In the first case (Fig.1(a.1)), only Px and Py components change across the xz and yz planes,
respectively. The presented configuration corresponds to a flux-closure pattern of polarization for
the Px and Py components, while additionally featuring a nonzero constant Pz component. Notably,
similar polarization structures have been predicted from first-principles calculations in (Ba,Sr)TiO3

nanocomposites [5]. One instructive topological characteristic of this configuration can be obtained
by mapping the flux of polarization through a contour in real space to the flux in the order parameter
space. The topological flux in real space can be defined as Φ =

∫
S n · (∂xn × ∂yn) [8], where n

represents the normalized polarization vector field, and S denotes a specific simply connected region
in real space. In the case under study, topological flux represents a characteristic of particular
importance. Indeed, the translational invariance of the considered polarization distributions along
the domains intersection line makes the system effectively two-dimensional, allowing to keep Φ well
defined. Practically, the first step of the calculation of topological flux generated by the intersection
line (its topological charge), is achieved by defining a closed contour in the xy plane enclosing the
intersection line (blue circle in Fig.1(a.3)). Secondly, one maps the orientation of the dipoles along
this path onto the unit sphere. In our case this yields a square whose nodes (red dots in Fig.1(a.2)
and (a.3)) intercept the sphere at the latitude defined by Pz. The topological flux is equal to the
area of the spherical cap with cut edges (Fig.1(a.2)) obtained by projection of the obtained square
on the sphere surface. As one can immediately see, the obtained topological charge monotonically
increases upon decreasing |Pz|, however showing a discontinuity at Pz = 0. Indeed, in contrast to
magnetic systems, for which the magnitude of individual spins can be assumed constant, Φ is equal
to zero at Pz = 0, while having a limit of π/2 at Pz → 0. The existence of such limiting point
configuration would correspond to a ferroelectric analogue of the so-called Bloch-line in magnetic
materials. Finally, it is worthwhile noticing that in this domains configuration, the variation of Px

and Py along the path are encompassed in the cross product term ∂xn×∂yn appearing in the chiral
charge definition. Hence, considering these two components only, yields a vortex singularity in the
xy plane, thereby enabling the identification of the intersection line with a vortex line.

The second case is concerned with the domain walls intersection for which only Pz and Px

components change across the yz and xz planes, respectively (Fig.1(b.1)). This configuration is
assumed to have a constant Py component. The mapping of the flux in real space to the order
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FIG. 1: (a) Dipolar structure in the vicinity of intersecting domain walls. In (a.1) is displayed the case
of intersecting Px and Py domain walls (denoted by DWx and DWy), while (a.2) corresponds to the case
of intersecting Px and Pz domain walls (DWx and DWz). In both cases, the intersection line is along the
z-axis (Lxy in (a.1) and Lxz in (a.2)). (b) Mapping of the polarization orientation onto the unit sphere when
circulating along a closed path in xy-plane enclosing Lxy (b.1) and Lxz (b.2). (c) Projection of polarization
field depicted in (a.1) on xy plane (c.1). Projection of polarization distribution (b.1) on two differently
oriented planes. In the inclined plane, the projection of the vector field reveals its vortex singularity.

parameter space yields the same result as in the former case, however having the truncated spherical
cap revolving around the y-axis, in accordance with the constant Py component. Notably, one does
not observe the vortex singularity in the xz plane, but rather an Ising domain profile, which in our
case corresponds to the stacking of the vortices in xz plane along the intersection line contained
within this plane. Later can be verified by projecting the polarization vector field on xy plane
rotated around x axis by the angle φ gradually approaching π/2. The projection corresponding to
φ = π/4 is depicted in Fig.1(b.3), for which the vortex nature of the intersection line is retrieved.
At φ → π/2 the distance between the core of the projected vortex observed in Fig.1(b.3) and
the domain walls intersection line tends to zero along with the elongation of the vortex projection
along the rotated y axis. Moreover, the vortex nature of the intersection line can be confirmed by
the existence of a global transformation of the vector field corresponding to a passive coordinate
rotation around x axis by an angle of π/2 which conserves the topological flux.

Finally, we show, that realistic patterns of polarization field yielding an integer topological flux
can be allowed in ferroelectric systems thereby allowing to predict dipolar configurations analogous
to magnetic skyrmionic structures.
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